4.0 Article

Stochastic modeling suggests that noise reduces differentiation efficiency by inducing a heterogeneous drug response in glioma differentiation therapy

期刊

BMC SYSTEMS BIOLOGY
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12918-016-0316-x

关键词

Stochastic modeling; Ultrasensitivity; Noise; Differentiation efficiency; Drug resistance; Glioma differentiation therapy

资金

  1. National Natural Science Foundation of China [61503419, 11475273, 11301517, 81373428, 91230204]
  2. Guangdong Nature Science Foundation [2014A030310355, 2016A030313234]
  3. 985 project of Sun Yat-sen University [50000-31101302]
  4. Education Department of Liaoning Province [LT2015011]
  5. Fundamental Research Funds for the Central Universities [13ykpy07]

向作者/读者索取更多资源

Background: Glioma differentiation therapy is a novel strategy that has been used to induce glioma cells to differentiate into glia-like cells. Although some advances in experimental methods for exploring the molecular mechanisms involved in differentiation therapy have been made, a model-based comprehensive analysis is still needed to understand these differentiation mechanisms and improve the effects of anti-cancer therapeutics. This type of analysis becomes necessary in stochastic cases for two main reasons: stochastic noise inherently exists in signal transduction and phenotypic regulation during targeted therapy and chemotherapy, and the relationship between this noise and drug efficacy in differentiation therapy is largely unknown. Results: In this study, we developed both an additive noise model and a Chemical-Langenvin-Equation model for the signaling pathways involved in glioma differentiation therapy to investigate the functional role of noise in the drug response. Our model analysis revealed an ultrasensitive mechanism of cyclin D1 degradation that controls the glioma differentiation induced by the cAMP inducer cholera toxin (CT). The role of cyclin D1 degradation in human glioblastoma cell differentiation was then experimentally verified. Our stochastic simulation demonstrated that noise not only renders some glioma cells insensitive to cyclin D1 degradation during drug treatment but also induce heterogeneous differentiation responses among individual glioma cells by modulating the ultrasensitive response of cyclin D1. As such, the noise can reduce the differentiation efficiency in drug-treated glioma cells, which was verified by the decreased evolution of differentiation potential, which quantified the impact of noise on the dynamics of the drug-treated glioma cell population. Conclusion: Our results demonstrated that targeting the noise-induced dynamics of cyclin D1 during glioma differentiation therapy can increase anti-glioma effects, implying that noise is a considerable factor in assessing and optimizing anti-cancer drug interventions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据