4.5 Article

HopPER: an adaptive model for probability estimation of influenza reassortment through host prediction

期刊

BMC MEDICAL GENOMICS
卷 13, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12920-019-0656-7

关键词

Influenza; Reassortment estimation; Host tropism; Random forest

资金

  1. AcRF Tier 2 grant, Ministry of Education, Singapore [MOE2014-T2-2-023]

向作者/读者索取更多资源

Background Influenza reassortment, a mechanism where influenza viruses exchange their RNA segments by co-infecting a single cell, has been implicated in several major pandemics since 19th century. Owing to the significant impact on public health and social stability, great attention has been received on the identification of influenza reassortment. Methods We proposed a novel computational method named HopPER (Host-prediction-based Probability Estimation of Reassortment), that sturdily estimates reassortment probabilities through host tropism prediction using 147 new features generated from seven physicochemical properties of amino acids. We conducted the experiments on a range of real and synthetic datasets and compared HopPER with several state-of-the-art methods. Results It is shown that 280 out of 318 candidate reassortants have been successfully identified. Additionally, not only can HopPER be applied to complete genomes but its effectiveness on incomplete genomes is also demonstrated. The analysis of evolutionary success of avian, human and swine viruses generated through reassortment across different years using HopPER further revealed the reassortment history of the influenza viruses. Conclusions Our study presents a novel method for the prediction of influenza reassortment. We hope this method could facilitate rapid reassortment detection and provide novel insights into the evolutionary patterns of influenza viruses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据