4.4 Article

Fruit syndromes in Viburnum: correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits

期刊

BMC EVOLUTIONARY BIOLOGY
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12862-019-1546-5

关键词

Fruit color; Seed dispersal; Plant-animal interactions; Fruit syndromes; Temperate forests; Correlated evolution; Trait evolution

资金

  1. National Science Foundation Graduate Research Fellowship [DGE-1122492]
  2. Yale MacMillan International Dissertation Research Fellowship

向作者/读者索取更多资源

Premise A key question in plant dispersal via animal vectors is where and why fruit colors vary between species and how color relates to other fruit traits. To better understand the factors shaping the evolution of fruit color diversity, we tested for the existence of syndromes of traits (color, morphology, and nutrition) in the fruits of Viburnum. We placed these results in a larger phylogenetic context and reconstructed ancestral states to assess how Viburnum fruit traits have evolved across the clade. Results We find that blue Viburnum fruits are not very juicy, and have high lipid content and large, round endocarps surrounded by a small quantity of pulp. Red fruits display the opposite suite of traits: they are very juicy with low lipid content and smaller, flatter endocarps. The ancestral Viburnum fruit may have gone through a sequence of color changes before maturation (green to yellow to red to black), though our reconstructions are equivocal. In one major clade of Viburnum (Nectarotinus), fruits mature synchronously with reduced intermediate color stages. Most transitions between fruit colors occurred in this synchronously fruiting clade. Conclusions It is widely accepted that fruit trait diversity has primarily been driven by the differing perceptual abilities of bird versus mammal frugivores. Yet within a clade of largely bird-dispersed fruits, we find clear correlations between color, morphology, and nutrition. These correlations are likely driven by a shift from sequential to synchronous development, followed by diversification in color, nutrition, and morphology. A deeper understanding of fruit evolution within clades will elucidate the degree to which such syndromes structure extant fruit diversity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据