4.4 Article

Early Metastable Assembly during the Stress-Induced Formation of Worm-like Amyloid Fibrils of Nucleic Acid Binding Domains of TDP-43

期刊

BIOCHEMISTRY
卷 59, 期 3, 页码 315-328

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biochem.9b00780

关键词

-

资金

  1. DST-SERB early career research award [ECR/2015/000027]
  2. University Grants Commission, India

向作者/读者索取更多资源

TDP-43 protein travels between the cytosol and the nucleus to perform its nucleic acid binding functions through its two tandem RNA recognition motif domains (TDP-43(tRRM)). When exposed to various environmental stresses, it forms abnormal aggregates in the cytosol of neurons, which are the hallmarks of amyotrophic lateral sclerosis and other TDP-43 proteinopathies. However, the nature of early structural changes upon stress sensing and the consequent steps during the course of aggregation are not well understood. In this study, we show that under low-pH conditions, mimicking starvation stress, TDP-43(tRRm) undergoes a conformational opening reaction linked to the protonation of buried ionizable residues and grows into a metastable oligomeric assembly (called the low-pH form or the L form). In the L form, the protein molecules have disrupted tertiary structure, solvent-exposed hydrophobic patches, and mobile side chains but the native-like secondary structure remains intact. The L form structure is held by weak interactions and has a steep dependence on ionic strength. In the presence of as little as 15 mM KCl, it fully misfolds and further oligomerizes to form a beta-sheet rich beta form in at least two distinct steps. The beta form has an ordered, stable structure that resembles worm-like amyloid fibrils. The unstructured regions of the protein gain structure during L (sic) beta conversion. Our results suggest that TDP-43(tRRm) could function as a stress sensor and support a recent model in which stress sensing during neurodegeneration occurs by assembly of proteins into metastable assemblies that are precursors to the solid aggregates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据