4.7 Article

An atmospheric pressure plasma jet to tune the bioactive peptide coupling to polycaprolactone electrospun layers

期刊

APPLIED SURFACE SCIENCE
卷 507, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.144713

关键词

Electrospun fibers; Atmospheric pressure plasma; Adhesive peptide; Gradients

向作者/读者索取更多资源

The surface chemistry of scaffolds for tissue regeneration can guide cells growth. In this study, we present a novel method to functionalize electrospun Polycaprolactone (PCL) scaffolds allowing the tuning of biomolecule superficial concentration by varying only one process parameter. The method is based on the deposition of NH2 functional groups starting form (3-Aminopropyl) triethoxysilane (APTES) as precursor by a novel Atmospheric Pressure Plasma Jet (APPJ) and by a successive selective covalent linking of these amines with a synthetic Human Vitronectin adhesive cue (HVP). The addition, in the peptide C-terminus, of an aldehyde group ensures the selective ligation by alkylimino-de-oxo-bisubstitution between the primary amine and HVP. By this method, we managed to alter the HVP surface concentration just varying the deposition time of the plasma process; this resulted in different surface coverage of the plasma coating, which in turn led to diverse amount of linked HVP. Coating stability, morphology and coverage was assessed by infrared and photo-electron spectroscopies and by electron microscopy. As a function of the coverage a variation on peptide concentration was revealed by Total Nitrogen method and confirmed by biological assays, which demonstrated an increase of human osteoblasts viability as a function of peptide concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据