4.7 Article

Ag supported Z-scheme WO2.9/g-C3N4 composite photocatalyst for photocatalytic degradation under visible light

期刊

APPLIED SURFACE SCIENCE
卷 501, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.144258

关键词

Ag/WO2.9/g-C3N4; Z-scheme; Adsorption; Photocatalysis; Visible light

资金

  1. National Natural Science Foundation of China [21622509, 21527806]
  2. Department of Science and Techniques of Jilin Province [2160201008GX, 20170203004SF, 20170101183JC]
  3. Science and Technology Bureau of Changchun [15SS05]

向作者/读者索取更多资源

Efficient utilization of photo-induced carriers and adsorption capacity is a promising approach to realize positive photocatalytic dye degradation. Yet the ability to reliably combine both features within one photocatalytic system, especially inorganic stuff is challenging. Here we reported the formation of WO2.9 with oxygen vacancy demonstrating better adsorption capacity promotion in comparison with traditional WO3. Besides, resorting to Ag nanoparticles as cocatalyst supported WO2.9 on g-C3N4 (Ag/WO2.9/g-C3N4) catalyst has been constructed, which has low-energy of electrons in WO2.9 neutralized with holes in g-C3N4, leaving intensive energy holes from WO2.9 for hydroxyl radical generation and electrons of g-C3N4 resulted in superoxide radical. Depending on the dual radicals existence and exploited adsorption capacity promotion, Ag/WO2.9/g-C3N4 exhibited desired photo-degradation performance for Rhodamine B, methylene blue and methyl orange under visible light irradiation (lambda (>) 420 nm), which was distinctly better than single Ag/WO2.9 and onefold g-C3N4. In the end, a possible Z-scheme photocatalytic mechanism was proposed to explain the effective separation of photogenerated carriers Ag/WO2.9/g-C3N4 heterojunctions. This work expanded our understanding between structure-property and photocatalytic activity and applied this understanding to design highly photoactive catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据