4.8 Article

Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification

期刊

APPLIED ENERGY
卷 260, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.114315

关键词

Biomass; Torrefaction; Chemical looping gasification; Tar formation mechanism; Syngas

资金

  1. National Natural Science Foundation of China [51776209, 51876208, 51606204, 51661145011]
  2. Science and Technology Planning Project of Guangdong Province [2015A020215024]
  3. Youth Innovation Promotion Association, CAS [2018383]
  4. Pearl River S&T Nova Program of Guangzhou [201806010061]

向作者/读者索取更多资源

The objective of this study is to investigate the effect of torrefaction pretreatment on the syngas production and tar formation from chemical looping gasification (CLG) of biomass over different oxygen carriers. The torrefaction of eucalyptus wood and subsequent CLG were systematically studied by using the fixed bed reactors coupling with various analytical methods. The experimental results demonstrate that torrefaction played significant impacts on CLG of eucalyptus wood using iron ore as an oxygen carrier. The gas yield and carbon conversion efficiency from CLG of eucalyptus wood were lowered by torrefaction, while the tar content was evidently reduced from 43.6 to 17.6 g/Nm(3). These results could be due to the devolatilization, polycondensation, and carbonization of eucalyptus wood during torrefaction, resulting in the formation of fewer tar precursors and more char with lower reactivity during subsequent CLG. The negative impacts of torrefaction on the gas yield and carbon conversion efficiency of CLG can be effectively overcome by the selection of suitable oxygen carriers. Five metallic ferrites were successfully synthesized and used to replace iron ore for CLG of torrefied eucalyptus wood obtained at 280 degrees C. It is found that NiFe2O4 reduced the tar content by 88.8% and improved the gas yield by 27.5% compared to CLG of untreated eucalyptus wood over iron ore. These results suggest that integrating biomass torrefaction pretreatment with CLG is an efficient strategy for enhancing syngas production whilst minimizing tar formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据