4.8 Article

Combination Stiffness Gradient with Chemical Stimulation Directs Glioma Cell Migration on a Microfluidic Chip

期刊

ANALYTICAL CHEMISTRY
卷 92, 期 1, 页码 892-898

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b03681

关键词

-

资金

  1. National Natural Science Foundation of China [21775086, 21435002, 21621003]

向作者/读者索取更多资源

Tumor cells respond actively to the extracellular microenvironment via biomechanical and biochemical stimulation. Microchips provide a flexible platform to integrate multiple factors for cell research. In this work, we developed a subtle microfluidic chip that can generate a controllable stiffness gradient and orthogonal chemical stimulation to study the behaviors of glioma cells. Fibronectin-conjugated polyacrylamide (PAA) hydrogel with a longitudinal stiffness gradient ranging from about 1 kPa to 40 kPa is integrated within the cell culture chamber while lateral diffusion-based chemical stimulation is generated through circumambient microchannel arrays. The synergistic effect of epidermal growth factor (EGF) stimulation and hydrogel stiffness gradient on U87-MG cell migration was studied. By tracing cell migration, we discovered that hydrogel stiffness can promote cell chemotaxis, while the EGF gradient can accelerate cell migration. In addition, cell morphology showed typical cell spreading, increased aspect ratios, and decreased circularity in response to a stiffer substrate and plateaued at a certain stiffness level. Meanwhile, the content of intracellular reactive oxygen species (ROS) on the hydrogel soft end is enhanced by approximately 2 fold compared with that on the hydrogel stiff end. The enhancement of substrate stiffness on cell chemotaxis is very significant for in vitro model simulation and tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据