4.7 Article

Martensitic twin boundary migration as a source of irreversible slip in shape memory alloys

期刊

ACTA MATERIALIA
卷 186, 期 -, 页码 50-67

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2019.12.043

关键词

Interface structure; NiTi; Shape Memory Alloys; Slip emission; Twin boundary migration

资金

  1. Air Force Office of Scientific Research (AFOSR) [FA9550-18-1-0198]
  2. University of Illinois at Urbana-Champaign

向作者/读者索取更多资源

The mechanistic origin of fatigue in Shape Memory Alloys (SMAs) is addressed using atomistic simulations. A causal explanation is proposed for the known agreement between the fatigue-activated slip system and the martensitic twinning system. As a model system, the Type twin boundary (TB) in NiTi B19' martensite phase is analyzed. TEM-based models have established the presence of disconnections on the TB. Topological models establish the TB migration to depend on the motion of twinning partials on these disconnections. A disconnection is setup within a Molecular Statics (MS) framework. A twinning partial is positioned on it by enforcing continuum displacement fields external to a prescribed core of atoms which is subsequently relaxed under governance of the interatomic potential. The displacement fields are calculated from the anisotropic Eshelby-Stroh formalism and enforced in a non-Cauchy-Born adherent manner to obtain the right core structulre. TB migration is simulated as a motion of this disconnection under applied load. In the presence of a barrier to this motion, a dislocation reaction occurs where a stacking fault emits at the TB while returning a residual negated partial. The emissary fault partial is proposed as a precursor to the resulting slip observed in reverse-transformed austenite. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据