4.8 Article

Plasmon-Induced Charge Transfer: Challenges and Outlook

期刊

ACS NANO
卷 13, 期 12, 页码 13610-13614

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b08829

关键词

-

资金

  1. Office of Naval Research through the U.S. Naval Research Laboratory

向作者/读者索取更多资源

The decay of a surface plasmon, a collective electron oscillation at the surface of a metal, can generate hot charge carriers that may be transferred to an adjacent semiconductor. This plasmon-induced charge transfer process can be used to enhance photocatalysis, to create photodetectors, or to drive selective photochemistry. However, the charge transfer efficiency in many fabricated devices remains too low for practical applications, typically <1%. In this Perspective, I discuss critical aspects of designing plasmonic systems for improved performance and highlight important findings for maximizing the transfer efficiency. In particular, I draw attention to the article by Ma and Gao in this issue of ACS Nano that describes using real-time time-dependent density functional theory to give a detailed and informative look at the charge transfer dynamics at a TiO2-Ag nanocluster interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据