4.8 Article

Resolving the topological classification of bismuth with topological defects

期刊

SCIENCE ADVANCES
卷 5, 期 11, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aax6996

关键词

-

资金

  1. United States-Israel Binational Science Foundation (BSF) [2016389]
  2. Helmsley Charitable Trust [2018PG-ISL006]
  3. German-Israeli Foundation (GIF) [I-1364-303.7/2016]
  4. European Research Council (ERC) under the European Union [678702]
  5. European Research Council (ERC) [678702] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The growing diversity of topological classes leads to ambiguity between classes that share similar boundary phenomenology. This is the status of bulk bismuth. Recent studies have classified it as either a strong or a higher-order topological insulator, both of which host helical modes on their boundaries. We resolve the topological classification of bismuth by spectroscopically mapping the response of its boundary modes to a screw-dislocation. We find that the one-dimensional mode, on step-edges, extends over a wide energy range and does not open a gap near the screw-dislocations. This signifies that this mode binds to the screw-dislocation, as expected for a material with nonzero weak indices. We argue that the small energy gap, at the time reversal invariant momentum L, positions bismuth within the critical region of a topological phase transition between a higher-order topological insulator and a strong topological insulator with nonzero weak indices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据