4.5 Review

Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview

期刊

MATERIALS RESEARCH EXPRESS
卷 6, 期 11, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/2053-1591/ab4458

关键词

plant extract; biological synthesis; green chemistry; metallic nanoparticle; biofabrication; biomolecular compound

资金

  1. Ministry Of Education (MOE) MALAYSIA
  2. Universiti Kebangsaan Malaysia [TRGS/1/2018/UKM/01/6/2]

向作者/读者索取更多资源

Recently, a biological approach to synthesizing materials via environmentally friendly green chemistry-based techniques involving natural materials such as plants, bacteria, fungi, seaweed, polysaccharides, biodegradable polymers, plant-derived materials and algae has been employed as an alternative method for the synthesis of metal and metal oxide nanoparticles. With increasing enthusiasm for efficient green chemistry, biosynthetic routes for fabricating nanoparticles have aroused much interest because they are environmentally benign, simple, economic, and clean technology; they do not involve hazardous chemicals, and they have zero contaminants and by-products. Of these bio-entities, plant extracts have received great attention due to their ability to reduce and stabilize metal nanoparticles in a single-step synthesis using their distinct natural traits. Due to their diverse and complex compositions, natural organic phytoconstituent biomolecules existing in plant extracts such as alkaloids, flavonoids, saponins, steroids, terpenoids and tannins act as reducing and stabilizing agents. This paper provides an updated review of recent literature on metal and metal oxide nanoparticles, such as those containing silver, gold, palladium, platinum, zinc oxide, iron, titanium, ceria and magnetite, and the transformations, directions and current uses of green synthesis methods using plant extracts. The challenges, limiting factors and future direction of the plant-based synthesis of metal nanoparticles are also highlighted in this review.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据