4.6 Article

An Enhanced Feature Pyramid Object Detection Network for Autonomous Driving

期刊

APPLIED SCIENCES-BASEL
卷 9, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/app9204363

关键词

object detection; feature pyramid network; feature recalibration; context embedding; autonomous driving systems; augmented reality

向作者/读者索取更多资源

Feature Pyramid Network (FPN) builds a high-level semantic feature pyramid and detects objects of different scales in corresponding pyramid levels. Usually, features within the same pyramid levels have the same weight for subsequent object detection, which ignores the feature requirements of different scale objects. As we know, for most detection networks, it is hard to detect small objects and occluded objects because there is little information to exploit. To solve the above problems, we propose an Enhanced Feature Pyramid Object Detection Network (EFPN), which innovatively constructs an enhanced feature extraction subnet and adaptive parallel detection subnet. Enhanced feature extraction subnet introduces Feature Weight Module (FWM) to enhance pyramid features by weighting the fusion feature map. Adaptive parallel detection subnet introduces Adaptive Context Expansion (ACE) and Parallel Detection Branch (PDB). ACE aims to generate the features of adaptively enlarged object context region and original region. PDB predicts classification and regression results separately with the two features. Experiments showed that EFPN outperforms FPN in detection accuracy on Pascal VOC and KITTI datasets. Furthermore, the performance of EFPN meets the real-time requirements of autonomous driving systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据