4.6 Article

Automated Identification of Wood Veneer Surface Defects Using Faster Region-Based Convolutional Neural Network with Data Augmentation and Transfer Learning

期刊

APPLIED SCIENCES-BASEL
卷 9, 期 22, 页码 -

出版社

MDPI
DOI: 10.3390/app9224898

关键词

defect detection; quality control; wood veneer; data augmentation; transfer learning; faster R-CNN; deep learning

向作者/读者索取更多资源

In the lumber and wood processing industry, most visual quality inspections are still done by trained human operators. Visual inspection is a tedious and repetitive task that involves a high likelihood of human error. Currently, new automated solutions with high-resolution cameras and visual inspection algorithms are being tested, but they are not always fast and accurate enough for real-time industrial applications. This paper proposes an automatic visual inspection system for the location and classification of defects on the wood surface. We adopted a faster region-based convolutional neural network (faster R-CNN) for the identification of defects on wood veneer surfaces. Faster R-CNN has been successfully used in medical image processing and object tracking before, but it has not yet been applied for wood panel surface quality assurance. To improve the results, we used pre-trained AlexNet, VGG16, BNInception, and ResNet152 neural network models for transfer learning. The results of the experiments using a synthetically augmented dataset are presented. The best average accuracy of 80.6% was obtained using the pretrained ResNet152 neural network model. By combining all the defect classes, a 96.1% accuracy of finding wood panel surface defects was achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据