4.7 Article

Silica-Coated Magnetic Nanoparticles Decrease Human Bone Marrow-Derived Mesenchymal Stem Cell Migratory Activity by Reducing Membrane Fluidity and Impairing Focal Adhesion

期刊

NANOMATERIALS
卷 9, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/nano9101475

关键词

magnetic nanoparticles; human bone marrow-derived mesenchymal stem cells; membrane fluidity; focal adhesion; cytoskeletal abnormality

资金

  1. National Research Foundation (NRF) - Ministry of Science and ICT (MSIT) in Korea [2018R1D1A1B07049494, 2016M3C7A1904392]
  2. Korea Basic Science Institute (KBSI) National Research Facilities & Equipment Center (NFEC) - Korea government (Ministry of Education) [2019R1A6C1010003]
  3. BioNano Health-Guard Research Center as Global Frontier Project - Ministry of Science and ICT (MSIT) in Korea [NRF-2018M3A6B2057299]

向作者/读者索取更多资源

For stem cell-based therapies, the fate and distribution of stem cells should be traced using non-invasive or histological methods and a nanomaterial-based labelling agent. However, evaluation of the biophysical effects and related biological functions of nanomaterials in stem cells remains challenging. Here, we aimed to investigate the biophysical effects of nanomaterials on stem cells, including those on membrane fluidity, using total internal reflection fluorescence microscopy, and traction force, using micropillars of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) labelled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO2(RITC)). Furthermore, to evaluate the biological functions related to these biophysical changes, we assessed the cell viability, reactive oxygen species (ROS) generation, intracellular cytoskeleton, and the migratory activity of MNPs@SiO2(RITC)-treated hBM-MSCs. Compared to that in the control, cell viability decreased by 10% and intracellular ROS increased by 2-fold due to the induction of 20% higher peroxidized lipid in hBM-MSCs treated with 1.0 mu g/mu L MNPs@SiO2(RITC). Membrane fluidity was reduced by MNPs@SiO2(RITC)-induced lipid oxidation in a concentration-dependent manner. In addition, cell shrinkage with abnormal formation of focal adhesions and similar to 30% decreased total traction force were observed in cells treated with 1.0 mu g/mu L MNPs@SiO2(RITC) without specific interaction between MNPs@SiO2(RITC) and cytoskeletal proteins. Furthermore, the migratory activity of hBM-MSCs, which was highly related to membrane fluidity and cytoskeletal abnormality, decreased significantly after MNPs@SiO2(RITC) treatment. These observations indicated that the migratory activity of hBM-MSCs was impaired by MNPs@SiO2(RITC) treatment due to changes in stem-cell biophysical properties and related biological functions, highlighting the important mechanisms via which nanoparticles impair migration of hBM-MSCs. Our findings indicate that nanoparticles used for stem cell trafficking or clinical applications should be labelled using optimal nanoparticle concentrations to preserve hBM-MSC migratory activity and ensure successful outcomes following stem cell localisation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据