4.5 Article

In Vitro Measurement of Particle Margination in the Microchannel Flow: Effect of Varying Hematocrit

期刊

BIOPHYSICAL JOURNAL
卷 108, 期 10, 页码 2601-2608

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2015.04.013

关键词

-

资金

  1. U.S. Army High Performance Computing Research Center (AHPCRC)
  2. Stanford University's Certainty computer cluster - American Recovery and Reinvestment Act (ARRA) [W911NF07200271]
  3. National Science Foundation [CBET 1066263]
  4. Stanford Graduate Fellows in Science and Engineering (SGF)

向作者/读者索取更多资源

It has long been known that platelets undergo margination when flowing in blood vessels, such that there is an excess concentration near the vessel wall. We conduct experiments and three-dimensional boundary integral simulations of platelet-sized spherical particles in a microchannel 30 mu m in height to measure the particle-concentration distribution profile and observe its margination at 10%, 20%, and 30% red blood cell hematocrit. The experiments involved adding 2.15-mu m-diameter spheres into a solution of red blood cells, plasma, and water and flowing this mixture down a microfluidic channel at a wall shear rate of 1000 s(-1). Fluorescence imaging was used to determine the height and velocity of particles in the channel. Experimental results indicate that margination has largely occurred before particles travel 1 cm downstream and that hematocrit plays a role in the degree of margination. With simulations, we can track the trajectories of the particles with higher resolution. These simulations also confirm that margination from an initially uniform distribution of spheres and red blood cells occurs over the length scale of O(1 cm), with higher hematocrit showing faster margination. The results presented here, from both experiments and 3D simulations, may help explain the relationship between bleeding time in vessel trauma and red blood cell hematocrit as platelets move to a vessel wall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据