4.6 Article

Modeling Wrist Micromovements to Measure In-Meal Eating Behavior From Inertial Sensor Data

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2019.2892011

关键词

Wrist; Mouth; Feature extraction; Informatics; Monitoring; Acceleration; Obesity; Biomedical signal processing; wearable sensors

资金

  1. EU Commission [727688, 690494]

向作者/读者索取更多资源

Overweight and obesity are both associated with in-meal eating parameters such as eating speed. Recently, the plethora of available wearable devices in the market ignited the interest of both the scientific community and the industry toward unobtrusive solutions for eating behavior monitoring. In this paper, we present an algorithm for automatically detecting the in-meal food intake cycles using the inertial signals (acceleration and orientation velocity) from an off-the-shelf smartwatch. We use five specific wrist micromovements to model the series of actions leading to and following an intake event (i.e., bite). Food intake detection is performed in two steps. In the first step, we process windows of raw sensor streams and estimate their micromovement probability distributions by means of a convolutional neural network. In the second step, we use a long short-term memory network to capture the temporal evolution and classify sequences of windows as food intake cycles. Evaluation is performed using a challenging dataset of 21 meals from 12 subjects. In our experiments, we compare the performance of our algorithm against three state-of-the-art approaches, where our approach achieves the highest F1 detection score (0.913 in the leave-one-subject-out experiment). The dataset used in the experiments is available at https://mug.ee.auth.gr/intake-cycle-detection/.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据