4.7 Article

Compressive Remodeling Alters Fluid Transport Properties of Collagen Networks - Implications for Tumor Growth

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-50268-z

关键词

-

资金

  1. NIH [U01 CA202123, R01 HL098028]
  2. Department of Defense [W81XWH-15-1-0070]

向作者/读者索取更多资源

Biomechanical alterations to the tumor microenvironment include accumulation of solid stresses, extracellular matrix (ECM) stiffening and increased fluid pressure in both interstitial and peri-tumoral spaces. The relationship between interstitial fluid pressurization and ECM remodeling in vascularized tumors is well characterized, while earlier biomechanical changes occurring during avascular tumor growth within the peri-tumoral ECM remain poorly understood. Type I collagen, the primary fibrous ECM constituent, bears load in tension while it buckles under compression. We hypothesized that tumor-generated compressive forces cause collagen remodeling via densification which in turn creates a barrier to convective fluid transport and may play a role in tumor progression and malignancy. To better understand this process, we characterized the structure-function relationship of collagen networks under compression both experimentally and computationally. Here we show that growth of epithelial cancers induces compressive remodeling of the ECM, documented in the literature as a TACS-2 phenotype, which represents a localized densification and tangential alignment of peritumoral collagen. Such compressive remodeling is caused by the unique features of collagen network mechanics, such as fiber buckling and cross-link rupture, and reduces the overall hydraulic permeability of the matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据