4.7 Article

Engineered Ureolytic Microorganisms Can Tailor the Morphology and Nanomechanical Properties of Microbial-Precipitated Calcium Carbonate

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-019-51133-9

关键词

-

资金

  1. Defense Advanced Research Projects Agency [HR0011-17-2-0039]
  2. NSF Major Research Instrumentation award [1338154]
  3. University of Colorado Boulder Libraries Open Access Fund
  4. Div Of Chem, Bioeng, Env, & Transp Sys
  5. Directorate For Engineering [1338154] Funding Source: National Science Foundation

向作者/读者索取更多资源

We demonstrate for the first time that the morphology and nanomechanical properties of calcium carbonate (CaCO3) can be tailored by modulating the precipitation kinetics of ureolytic microorganisms through genetic engineering. Many engineering applications employ microorganisms to produce CaCO3. However, control over bacterial calcite morphology and material properties has not been demonstrated. We hypothesized that microorganisms genetically engineered for low urease activity would achieve larger calcite crystals with higher moduli. We compared precipitation kinetics, morphology, and nanomechanical properties for biogenic CaCO3 produced by two Escherichia coli (E. coli) strains that were engineered to display either high or low urease activity and the native producer Sporosarcina pasteurii. While all three microorganisms produced calcite, lower urease activity was associated with both slower initial calcium depletion rate and increased average calcite crystal size. Both calcite crystal size and nanoindentation moduli were also significantly higher for the low-urease activity E. coli compared with the high-urease activity E. coli. The relative resistance to inelastic deformation, measured via the ratio of nanoindentation hardness to modulus, was similar across microorganisms. These findings may enable design of novel advanced engineering materials where modulus is tailored to the application while resistance to irreversible deformation is not compromised.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据