4.8 Article

Synthetic protein-conductive membrane nanopores built with DNA

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-12639-y

关键词

-

资金

  1. German-Israeli Project Cooperation (DIP) [TO 266/8-1]
  2. German Research Foundation (SFB 807-Membrane Transport and Communication)
  3. German Research Foundation (Cluster of Excellence Frankfurt EXC 115Macromolecular Complexes)
  4. EPSRC [EP/N009282/1]
  5. BBSRC [BB/M025373/1, BB/N017331/1]
  6. Leverhulme Trust [RPG-2017-015]
  7. European Research Council
  8. BBSRC [BB/N017331/1, BB/M025373/1] Funding Source: UKRI
  9. EPSRC [EP/N009282/1] Funding Source: UKRI

向作者/读者索取更多资源

Nanopores are key in portable sequencing and research given their ability to transport elongated DNA or small bioactive molecules through narrow transmembrane channels. Transport of folded proteins could lead to similar scientific and technological benefits. Yet this has not been realised due to the shortage of wide and structurally defined natural pores. Here we report that a synthetic nanopore designed via DNA nanotechnology can accommodate folded proteins. Transport of fluorescent proteins through single pores is kinetically analysed using massively parallel optical readout with transparent silicon-on-insulator cavity chips vs. electrical recordings to reveal an at least 20-fold higher speed for the electrically driven movement. Pores nevertheless allow a high diffusive flux of more than 66 molecules per second that can also be directed beyond equillibria. The pores may be exploited to sense diagnostically relevant proteins with portable analysis technology, to create molecular gates for drug delivery, or to build synthetic cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据