4.8 Review

Continuous Synthesis of Nanocrystals via Flow Chemistry Technology

期刊

SMALL
卷 16, 期 15, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201902828

关键词

flow chemistry; microreactions; nanocrystal synthesis

资金

  1. National Natural Science Foundation of China [91334201, U1607118]

向作者/读者索取更多资源

Modern nanotechnologies bring humanity to a new age, and advanced methods for preparing functional nanocrystals are cornerstones. A considerable variety of nanomaterials has been created over the past decades, but few were prepared on the macro scale, even fewer making it to the stage of industrial production. The gap between academic research and engineering production is expected to be filled by flow chemistry technology, which relies on microreactors. Microreaction devices and technologies for synthesizing different kinds of nanocrystals are discussed from an engineering point of view. The advantages of microreactors, the important features of flow chemistry systems, and methods to apply them in the syntheses of salt, oxide, metal, alloy, and quantum dot nanomaterials are summarized. To further exhibit the scaling-up of nanocrystal synthesis, recent reports on using microreactors with gram per hour and larger production rates are highlighted. Finally, an industrial example for preparing 10 tons of CaCO3 nanoparticles per day is introduced, which shows the great potential for flow chemistry processes to transfer lab research to industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据