4.7 Article

Exploring the persistence and spreading of antibiotic resistance from manure to biocompost, soils and vegetables

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 688, 期 -, 页码 262-269

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.06.081

关键词

Antibiotic resistant bacteria; Antibiotic resistance genes; Persistence; Spreading; Vegetable production chain

资金

  1. National Key Research and Development Plan of China [2016YFD0501404]
  2. Beijing Municipal Science and Technology Project [Z151100001115008]

向作者/读者索取更多资源

The main avenue in which antibiotic resistance enters soils is through the application of livestock manure. However, whether antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) persist and spread to vegetables with the application of manure and manure products is still unclear. This study assessed seven kinds of cultured ARB, 221 ARGs subtypes and three transposon genes in the vegetable production chain (from manure to biocompost, soils and vegetables). Results showed that at least 80% of ARB, ARGs and transposon genes were removed after aerobic composting. However, aerobic composting did not reduce the diversity of ARGs in pig and chicken manure. A total of 19 ARGs subtypes still persisted during aerobic composting. Compared to the temperature-therrnophilic stage, the number of bacteria resistant to erythromycin, the relative abundance of ARGs and IS613 increased 1.7-4.9 times at the temperature-decreasing stage. Direct application of biocompost introduced 11 ARGs subtypes to pakchoi, but these ARGs did not present in biocompost-amended soil. A transposon gene tnpA was also detected in the biocompost-amended soil, but surprisingly was found in the control vegetable. This demonstrated that the transposon gene is intrinsic in pakchoi. Bacterial community analysis and network analysis revealed that a specific genus Terrisporobacter carrying tetO, taW ermB and tnpA persisted in the vegetable production chain, which may generate a potential risk in the following production. Our study illuminates the persistence and spreading of antibiotic resistance in the vegetable production chain which could help manage the ecological risks arising from antibiotic resistance in manure sources. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据