4.7 Article

Impact of poplar-based phytomanagement on metal bioavailability in low-phosphorus calcareous soil with multi-metal contamination

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 686, 期 -, 页码 848-855

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.06.072

关键词

Phytoremediation; Trace metals; Phosphorus mobilization; Soil acidification; Afforestation

资金

  1. National Key Research and Development Program of China [2018YFC1802905]
  2. National Natural Science Foundation of China [41501337, 41401334]
  3. China Postdoctoral Science Foundation [2017M620480]

向作者/读者索取更多资源

Bioavailability of trace metals (TMs) is the key component in the management of TM-contaminated soils; however, its impact mechanism is unclear in low-phosphorus (P) calcareous soils afforested by fast-growing tree species for a long duration (>10 years). We selected a site contaminated with multiple TMs and phytomanaged by poplar (Populus hopeiensis Hu & Chow) to study the impact mechanism of plant-soil interactions on TM bioavailability along a long-term chronosequence (i.e., 10,15,20, and 25 years). We found that phytomanagement significantly decreased soil organic carbon (SOC) content, soil total nitrogen (N) content, and soil C/P and N/P ratios with stand age, but did not significantly change soil total P content. In contrast, soil available P content significantly changed in rhizospheric soils compared with the bulk soil, suggesting the tight coupling between the amplification of P turnover and N availability. Soil pH in rhizospheric soils significantly decreased by 0.22 to 0.32 units, while calcium carbonate (CaCO3) content decreased by 14% to 39%, as compared with the bulk soil. Bioavailable concentrations of cadmium, lead, and zinc were positively correlated with soil available P. whereas bioavailable nickel concentration was negatively correlated with soil pH. Furthermore, TM bioavailability in rhizospheric soils significantly increased with stand age, regardless of the metal type. Our results suggest that P mobilization associated with SOC depletion induced soil acidification followed by CaCO3 dissolution, collectively leading to metal mobilization with stand age. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据