4.7 Article

Low-temperature oxidation reactions of crude oils using TGA-DSC techniques

期刊

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
卷 141, 期 2, 页码 775-781

出版社

SPRINGER
DOI: 10.1007/s10973-019-09066-y

关键词

Low-temperature oxidation; Kinetic analysis; In situ combustion; Ramped temperature oxidation; Thermogravimetry; Differential scanning calorimeter

向作者/读者索取更多资源

In this research, combustion behaviour of three crude oils with different degrees API gravities was analysed. The thermogravimetric analyser (TGA) and differential scanning calorimeter (DSC) experiments were performed using three different heating rates (2, 5, and 10 degrees C min(-1)) under air atmosphere. The reaction regions, burn-out temperatures, and peak temperatures were determined accordingly. Two main reaction regions, particularly the low-temperature oxidation (LTO) and high-temperature oxidation (HTO) reactions, were figured out in TGA and DSC curves, which suggested exothermic behaviour. Kinetic parameters of the crude oils were determined using model free methods (Ozawa-Flynn-Wall, OFW, and Kissinger-Akahira-Sunose, KAS), which allows the calculation of kinetic properties at progressive conversion degrees without the requirement of any reaction models and f(alpha) estimations. The variation in activation energy with respect to the conversion degree pointed out that the LTO reaction stage can be subdivided into three subzones. The results indicated that the activation energies were changing depending on the conversion degree, which is an indication of complex reaction mechanisms. The change in activation energy with respect to conversion degree showed slight variation for heavy crude oil compared with that in light crude oil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据