4.5 Article

Removal of soluble uranium by illite supported nanoscale zero-valent iron: electron transfer processes and incorporation mechanisms

期刊

出版社

SPRINGER
DOI: 10.1007/s10967-019-06959-y

关键词

Uranium removal; Supported NZVI; Morphological evolution; Electron transfer; Incorporation mechanism

资金

  1. China Postdoctoral Science Foundation [2018M642953]

向作者/读者索取更多资源

In this study, natural illite is introduced to support nanoscale zero valent iron (NZVI). The chemical composition and the physical properties of illite supported nanoscale zero valent iron (I-NZVI) are systematically investigated, and I-NZVI is found to significantly reduce the agglomeration of the NZVI particles. A comparison of the U removal capacity between I-NZVI and NZVI over various reaction times is then conducted. With an initial concentration of U at 200 mu g/L, the I-NZVI removal capacity of U is as high as 3.41 mg U/g Fe, in contrast to 2.01 mg U/g Fe by NZVI at a dosage of 0.1 g/L. The initial pH of the reaction system determines the U removal capacity of I-NZVI, since it controls the speciation of U and the electron transfer processes during the reaction. Overall, based on the comprehensive understandings of the morphological change, variations in the crystalline structure, and the valence states of U and Fe, the removal mechanisms of U by I-NZVI can be concluded as the following processes: (1) the adsorption and incorporation of U(VI) onto the surface of I-NZVI, (2) the incorporation and reduction of U(V) into Fe(II), and (3) the reduction and precipitation of U(IV) with iron. [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据