4.7 Article

A three-phase VOF solver for the simulation of in-nozzle cavitation effects on liquid atomization

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 406, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2019.109068

关键词

Three-phase LES-VOF; Internal nozzle flows; Cavitation; Primary atomization; Injection; OpenFOAM

向作者/读者索取更多资源

The development of a single-fluid solver supporting phase-change and able to capture the evolution of three fluids, two of which are miscible, into the sharp interface capturing Volume of Fluid (VOF) approximation, is presented. The transport of each phase-fraction is solved independently by a flux-corrected transport method to ensure the boundedness of the void fraction over the domain. The closure of the system of equations is achieved by a cavitation model, that handles the phase change between the liquid and the fuel vapor and it also accounts for the interaction with the non-condensable gases. Boundedness and conservativeness of the solver in the transport of the volume fraction are verified on two numerical benchmarks: a two-dimensional bubble rising in a liquid column and a cavitating/condensing liquid column. Finally, numerical predictions from large-eddy simulations are compared against experimental results available from literature; in particular, validation against high-speed camera visualizations and Laser Doppler Velocimetry (LDV) measurements of cavitating microscopic in-nozzle flows in a fuel injector is reported. (C) 2019 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据