4.7 Article

Resolution limit of data-driven coarse-grained models spanning chemical space

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 151, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5119101

关键词

-

资金

  1. Emmy Noether program of the Deutsche Forschungsgemeinschaft (DFG)
  2. Max Planck Graduate Center

向作者/读者索取更多资源

Increasing the efficiency of materials design remains a significant challenge given the large size of chemical compound space (CCS). The use of a chemically transferable coarse-grained model enables different molecular fragments to map to the same bead type, significantly increasing screening efficiency. Here, we propose new criteria for the design of coarse-grained models allowing for the optimization of their chemical transferability and evaluate the Martini model within this framework. We further investigate the scope of this transferability by parameterizing three Martini-like models in which the number of bead types ranges from 5 to 16. These force fields are fully compatible with existing Martini environments because they are parameterized by interpolating the Martini interaction matrix. We then implement a Bayesian approach to determining which chemical groups are likely to be present on fragments corresponding to specific bead types for each model. We demonstrate that a level of accuracy comparable to Martini is obtained with a force field with fewer bead types, using the water/octanol partitioning free energy (Delta G(W -> Ol)) as our metric for comparison. However, the advantage of including more bead types is a reduction of uncertainty when back-mapping these bead types to specific chemistries. Just as reducing the size of the coarse-grained particles leads to a finer mapping of conformational space, increasing the number of bead types yields a finer mapping of CCS. Finally, we note that, due to the large size of fragments mapping to a single Martini bead, a resolution limit arises when using Delta G(W -> Ol) as the only descriptor when coarse-graining CCS. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据