4.7 Article

Single nanoparticle photoelectrochemistry: What is next?

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 151, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5124710

关键词

-

资金

  1. Air Force Office of Scientific Research (AFOSR) [FA9550-17-1-0255]

向作者/读者索取更多资源

Semiconductor photoelectrochemistry is a fascinating field that deals with the chemistry and physics of photodriven reactions at solid/liquid interfaces. The interdisciplinary field attracts (electro)chemists, materials scientists, spectroscopists, and theorists to study fundamental and applied problems such as carrier dynamics at illuminated electrode/electrolyte interfaces and solar energy conversion to electricity or chemical fuels. In the pursuit of practical photoelectrochemical energy conversion systems, researchers are exploring inexpensive, solution-processed semiconductor nanomaterials as light absorbers. Harnessing the enormous potential of nanomaterials for energy conversion applications requires a fundamental understanding of charge carrier generation, separation, transport, and interfacial charge transfer at heterogeneous nanoscale interfaces. Our current understanding of these processes is derived mainly from ensemble-average measurements of nanoparticle electrodes that report on the average behavior of trillions of nanoparticles. Ensemble-average measurements conceal how nanoparticle heterogeneity (e.g., differences in particle size, shape, and surface structure) contributes to the overall photoelectrochemical response. This perspective article focuses on the emerging area of single particle photoelectrochemistry, which has opened up an exciting new frontier: direct investigations of photodriven reactions on individual nanomaterials, with the ability to elucidate the role of particle-dependent properties on the photoelectrochemical behavior. Here, we (1) review the basic principles of photoelectrochemical cells, (2) point out the potential advantages and differences between bulk and nanoelectrodes, (3) introduce approaches to single nanoparticle photoelectrochemistry and highlight key findings, and (4) provide our perspective on future research directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据