4.7 Article

Dehydrogenation of the liquid organic hydrogen carrier system 2-methylindole/2-methylindoline/2-methyloctahydroindole on Pt(111)

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 151, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5112835

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [419654270, GO523/18-1, PA2109/3-1, WA1615/19-1]
  2. Cluster of Excellence (EAM) project
  3. (EXC 315)

向作者/读者索取更多资源

Among other N-heterocycles, indole and its substituted derivatives, such as methylindoles, are considered promising Liquid Organic Hydrogen Carriers (LOHCs) for the storage of renewable energy. We used X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), and density-functional theory (DFT) to investigate the low temperature adsorption and consecutive dehydrogenation reaction during heating of 2-methylindole, 2-methylindoline, and 2-methyloctahydroindole on Pt(111) and their viability as the LOHC system. In the photoemission experiments, for all H-x-2-methylindoles, we find deprotonation at the NH bond starting between 240 and 300 K, resulting in a 2-methylindolide species. Simultaneously or before this reaction step, the dehydrogenation of 2-methyloctahydroindole via 2-methylindoline and 2-methylindole intermediates is observed. For 2-methyloctahydroindole, we also find pi-allyl intermediates above 230 K. Starting at similar to 390 K, decomposition of the remaining 2-methylindolide species takes place under the conditions of our surface science experiments. DFT calculations give insight into the relative energies of the various species, reaction intermediates, and their isomers both in the gas phase and on the Pt(111) surface. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据