4.6 Article

Improving electronic properties and mechanical stability of Yb14MnSb11 via W compositing

期刊

JOURNAL OF APPLIED PHYSICS
卷 126, 期 17, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5118227

关键词

-

资金

  1. NASA Science Missions Directorate's Radioisotope Power Systems program office

向作者/读者索取更多资源

Many of the missions proposed and successfully completed by the National Aeronautics and Space Administration seek to scientifically investigate remote locations in our solar system, in particular to better understand the origin, evolution and structure of planetary systems. Long-lived, robust power systems are a fundamental capability for such missions, and radioisotope thermoelectric generators (RTGs) have proven to be a reliable power for exploration missions in deep space for the past 50 years. With increasing power needs for future missions, the improvement of thermoelectric materials' conversion efficiency is necessary. In this paper, we show how compositing with inert metallic inclusions can be efficiently used to improve the electronic properties of Yb14MnSb11. In this study, we found that the power factor of the p-type high temperature material, Yb14MnSb11, increases from similar to 8 to similar to 11.5 mu Wcm(-1) K-2 when composited with 5 vol. % W particles. At the same time, the composite samples have a higher thermal conductivity and, therefore, the final zT remains unchanged (similar to 1.3 at 1273 K). Preliminary hardness tests indicated a qualitative increase in mechanical robustness for the tungsten composite samples. These results can play a relevant role in device design and performance, improving the thermoelectric impedance matching for leg segmentation and helping overcome the intrinsic brittleness of high temperature ceramics such as Yb14MnSb11 for advanced device fabrication. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据