4.7 Article

Simultaneous Intramuscular And Intranasal Administration Of Chitosan Nanoparticles-Adjuvanted Chlamydia Vaccine Elicits Elevated Protective Responses In The Lung

期刊

INTERNATIONAL JOURNAL OF NANOMEDICINE
卷 14, 期 -, 页码 8179-8193

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IJN.S218456

关键词

Chlamydia psittaci; vaccine; chitosan nanoparticles; immunization route; respiratory infection

资金

  1. National Natural Science Foundation of China [81671986, 31872643, 31800162]
  2. Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control Foundation [2014-5]
  3. Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [2015-351]

向作者/读者索取更多资源

Background: Chlamydia psittaci is a zoonotic bacteria closely associated with psittacosis/ ornithosis. Vaccination has been recognized as the best way to inhibit the spread of C. psittaci due to the majority ignored of infections. The optimal Chlamydia vaccine was obstructed by the defect of single immunization route and the lack of availability of nontoxic and valid adjuvants. Methods: In this study, we developed a novel immunization strategy, simultaneous (SIM) intramuscular (IM) and intranasal (IN) administration of a C. psittaci antigens (Ags) adjuvanted with chitosan nanoparticles (CNPs). And SIM-CNPs-Ags were used to determine the different types of immune response and the protective role in vivo. Results: CNPs-Ags with zeta-potential values of 13.12 mV and of 276.1 nm showed excellent stability and optimal size for crossing the mucosal barrier with high 71.7% encapsulation efficiency. SIM-CPN-Ags mediated stronger humoral and mucosal responses by producing meaningfully high levels of IgG and secretory IgA (sIgA) antibodies. The SIM route also led to Ags-specific T-cell responses and increased IFN-gamma, IL-2, TNF-alpha and IL-17A in the splenocyte supernatants. Following respiratory infection with C. psittaci, we found that SIM immunization remarkably reduced bacterial load and the degree of inflammation in the infected lungs and made for a lower level of IFN-gamma, TNF-alpha and IL-6. Furthermore, SIM vaccination with CNPs-Ags had obviously inhibited C. psittaci disseminating to various organs in vivo. Conclusion: SIM immunization with CNPs-adjuvanted C. psittaci Ags may present a novel strategy for the development of a vaccine against the C. psittaci infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据