4.7 Article

3D-printability of aqueous poly(ethylene oxide) gels

期刊

EUROPEAN POLYMER JOURNAL
卷 120, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2019.08.033

关键词

Extrusion-based 3D printing; Poly(ethylene oxide); Gel; Viscosity; Process parameters; Drug delivery system

资金

  1. L'OREAL Baltic For Women In Science fellowship 2018
  2. Estonian National Commission for UNESCO
  3. Estonian Academy of Sciences
  4. L'OREAL UNESCO international program For Women In Science
  5. [PUT1088]
  6. [IUT-34-18]

向作者/读者索取更多资源

Printing technologies combined with a computer-aided design (CAD) have found an increasing number of uses in pharmaceutical applications. In extrusion-based printing, the material is forced through a nozzle to form a three-dimensional (3D) structure pre-designed by CAD. The aim of this study was to evaluate the 3D-printability of biocompatible aqueous poly(ethylene oxide) (PEO) gels and to investigate the effects of three formulation parameters on the 3D printing process. The impact of PEO concentration (gel viscosity), printing head speed and printing plate temperature was investigated at three different levels using a full factorial experimental design. The aqueous PEO gels were printed with a bench-top extrusion-based 3D printing system at an ambient room temperature. The viscosity measurements confirmed that the aqueous PEO gels follow a shear-thinning behaviour suitable for extrusion-based printing. Heating the printing plate allowed the gel to thy faster resulting in more precise printing outcome. With the non-heated plate, the gel formed a dumbbell-shaped grid instead of straight lines. Higher concentration and more viscous PEO gels formed the best structured 3D-printed lattices. In conclusion, the accuracy and precision of extrusion-based 3D printing of aqueous PEO gels is highly dependent on the formulation (PEO concentration) and printing parameters (printing head speed, plate temperature). By optimizing these critical process parameters, PEO may be suitable for printing novel drug delivery systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据