4.7 Article

Transcriptomic analysis of Chlorimuron-ethyl degrading bacterial strain Klebsiella jilinsis 2N3

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2019.109581

关键词

Chlorimuron-ethyl; Klebsiella jilinsis 2N3; Biodegradation; RNA-Seq; qRT-PCR; Gene knockout

资金

  1. National Natural Science Foundation of China [31672051]
  2. National Key Research and Development Program of China [2016YFD0200203]
  3. Science and Technology Development Program of Jilin Province, China [20190301063NY]

向作者/读者索取更多资源

Chlorimuron-ethyl is a sulfonylurea herbicide with a long residual period in the field and is toxic to rotational crops. Klebsiella jilinsis 2N3 is a gram-negative bacterium that can rapidly degrade Chlorimuron-ethyl. In this study, the gene expression changes in strain 2N3 during degradation of Chlorimuron-ethyl was analyzed by RNA-Seq. Results showed that 386 genes were up-regulated and 453 genes were down-regulated. KEGG pathway enrichment analysis revealed the highest enrichment ratio in the pathway of sulfur metabolism. On the basis of the functional annotation and gene expression, we predicted that carboxylesterase, monooxygenase, glycosyltransferase, and cytochrome P450 were involved in the metabolism of Chlorimuron-ethyl biodegradation. Results of qRT-PCR showed that the relative mRNA expression levels of these genes were higher in treatment group than those in control group. The cytochrome P450 encoded by Kj-CysJ and the alkanesulfonate monooxygenase encoded by Kj-SsuD were predicted and further experimentally confirmed by gene knockout as the key enzymes in the biodegradation process. Cultured in basal medium containing Chlorimuron-ethyl (5 mg L-1) in 36 h, the strains of Delta Kj-CysJ, Delta Kj-SsuD, and WT reached the highest OD600 values of 0.308, 0.873, and 1.085, and the highest degradation rates of Chlorimuron-ethyl of 11.83%, 96.21%, and 95.62%, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据