4.7 Article

Design and validation of a multi-electrode embedded sensor to monitor resistivity profiles over depth in concrete

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 223, 期 -, 页码 310-321

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2019.06.226

关键词

(Multi-electrode) embedded sensor; Monitoring; Electrical resistivity; Concrete structures; Finite element modeling

向作者/读者索取更多资源

Electrical resistivity is sensitive to various properties of concrete, such as water content. Usually used on the surface of old structures, devices for measuring such properties could also be adapted in order to be embedded inside the constitutive concrete of the linings of new tunnels or in new bridges, to contribute to structural health monitoring. This paper introduces a novel multi-electrode embedded sensor for monitoring the resistivity profile over depth in order to quantify concrete durability. The paper focuses on the design of the sensor as a printed circuit board (PCB), which brings several advantages, including geometric accuracy and mitigation of wiring issues, thus reducing invasiveness. The study also presents the numerical modeling of the sensor electrical response and its ability to assess an imposed resistivity profile, together with experimental validations using (i) saline solutions of known conductivity and (ii) concrete specimens subjected to drying. The results demonstrate the capability of the sensor to evaluate resistivity profiles in concrete with centimeter resolution. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据