4.5 Article

Aerodynamic validation studies on the performance analysis of iced wind turbine blades

期刊

COMPUTERS & FLUIDS
卷 192, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2019.104271

关键词

Icing; Ice accretion; DDES; Power loss; Wind energy

向作者/读者索取更多资源

Ice accretion on wind turbine blades distorts blade profiles and causes degradation in the aerodynamic characteristic of the blades. In this study ice accretion on turbine blades are simulated under various icing conditions, and the resulting power losses are estimated. The Blade Element Momentum method is employed together with an ice accretion prediction methodology based on the Extended Messinger model in a parallel computing environment. The predicted iced profiles are first validated with the experimental and numerical data available in the literature. 2D flow solutions and aerodynamic loads over iced blade profiles are obtained with 3 different flow solvers of increasing fidelity; XFOIL, an open-source panel code coupled with a turbulent boundary layer model, SU2, an open-source RANS solver, and METUDES, an in-house DDES solver. The power production losses of a 30 kW wind turbine operating with iced blades are then investigated in detail. It is shown that the XFOIL-based tool developed for the performance analysis of iced wind turbines successfully predicts ice profiles on turbine blades under various icing conditions and the consequent power losses. About 20% power loss is predicted for a 30 kW wind turbine exposed to icing conditions for an hour. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据