4.7 Article

Energy-efficient seawater softening and power generation using a microbial electrolysis cell-reverse electrodialysis hybrid system

期刊

CHEMICAL ENGINEERING JOURNAL
卷 391, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.123480

关键词

Calcium; Hydrogen production; Magnesium; Microbial electrolysis cell; Reverse electrodialysis; Seawater

资金

  1. Research and Development Program of the Korea Institute of Energy Research [KIER: B9-2421]

向作者/读者索取更多资源

Here we describe the development and testing of a hybrid system that combines microbial electrolysis and reverse electrodialysis (RED) to benefit energy production from seawater. A tubular, continuous-flow, microbial electrolysis cell (MEC) was used prior to RED to remove multivalent ions (Ca2+ and Mg2+) that are known to decrease RED power generation due to high electric membrane resistance. When a membrane electrode assembly was applied to reduce external resistance in the MEC, Ca2+ and Mg2+ were effectively removed with efficiencies of 84 +/- 5% and 99 +/- 5% (current density of 4.0 +/- 0.2 A/m(2)), respectively, and H-2 was simultaneously generated. A high H-2 (purity > 99.5%) production rate (2.00 +/- 0.09m(3)/m(3).d) at an applied voltage of 1.5 V, and maximum electrical energy efficiency (169 +/- 4%) was accomplished at an applied voltage of 0.9 V and with an anode hydraulic retention time of 6 h. Effluent (47 mS/cm) from the MEC was fed to the RED stack as a high-concentration solution and the conductivity of treated seawater was lower than untreated seawater (53.7 mS/cm) due to Ca2+ and Mg2+ elimination from the seawater. Despite its lower conductivity, treated seawater produced higher power (0.29 W/m(2), 26% increase) compared to untreated seawater due to the removal of Ca2+ and Mg2+. Therefore, the MEC is superior to other energy-consuming seawater pretreatment system as it produces energy during seawater pretreatment and successfully integrates with RED to enhance power generation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据