4.8 Article

Stability of conductive carbon additives in 5 V-class Li-ion batteries

期刊

CARBON
卷 158, 期 -, 页码 766-771

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2019.11.051

关键词

-

资金

  1. JSPS KAKENHI [JP15H05701]
  2. KAKENHI, JSPS, Japan [17J10359]

向作者/读者索取更多资源

A high oxidation stability of electrode components, especially of conductive carbon additives, is of importance in order to realize high-voltage (5 V-class) Li-ion batteries with higher energy densities. In this work, the oxidation stability of acetylene blacks is studied by analyzing the capacity (i.e., quantity of electricity) arising from their oxidation reactions via chronopotentiometry up to 5.5 V (vs. Li+/Li) in a highly concentrated electrolyte with high oxidation stability. Annealing at 1200 degrees C can improve their oxidation stability below 4.8 V by reducing the amounts of surface active sites. However, further raising the annealing temperature significantly degrades the stability at higher potentials (>4.8 V) due to the electrochemical anion intercalation induced by progressive graphitization. This work suggests that, for 5 V-class batteries, conductive carbon additives should be optimized to simultaneously minimize surface active sites and excessive graphitization. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Kinetics of Interfacial Ion Transfer in Lithium-Ion Batteries: Mechanism Understanding and Improvement Strategies

Yasuyuki Kondo, Takeshi Abe, Yuki Yamada

Summary: This article presents the recent progress in understanding the mechanism and kinetics of interfacial Li+ transfer in high-rate lithium-ion batteries. It reviews the reported activation energies at different interfaces, discusses the mechanism and rate-determining step of the interfacial Li+ transfer, and introduces promising strategies to reduce the activation energy.

ACS APPLIED MATERIALS & INTERFACES (2022)

Article Chemistry, Physical

Relationship between Electric Double-Layer Structure of MXene Electrode and Its Surface Functional Groups

Tatau Shimada, Norio Takenaka, Yasunobu Ando, Minoru Otani, Masashi Okubo, Atsuo Yamada

Summary: In this study, the atomic-scale double-layer structure of MXene electrodes with different terminated halogen elements was systematically investigated using density functional theory calculations. The results showed a clear relationship between the atomic number of the terminated halogen atoms and the capacitance.

CHEMISTRY OF MATERIALS (2022)

Article Chemistry, Multidisciplinary

Oxygen Redox Versus Oxygen Evolution in Aqueous Electrolytes: Critical Influence of Transition Metals

Hirohito Umeno, Kosuke Kawai, Daisuke Asakura, Masashi Okubo, Atsuo Yamada

Summary: Aqueous lithium-ion batteries are sustainable, low-cost, safe, and environmentally friendly. The use of high-salt-concentration strategy expands their electrochemical potential window, providing opportunities to explore high-performance electrode materials.

ADVANCED SCIENCE (2022)

Article Electrochemistry

Lithium-Rich O2-Type Li0.66[Li0.22Ru0.78]O2 Positive Electrode Material

Hirohito Umeno, Kosuke Kawai, Shin-ichi Nishimura, Daisuke Asakura, Masashi Okubo, Atsuo Yamada

Summary: This research reports on a high-capacity O2-type lithium-rich layered oxide Li1.22-x Ru0.78O2, which can achieve stable redox reactions and deliver a high capacity of 200 mAh g(-1).

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2022)

Article Materials Science, Multidisciplinary

Carbon-Coated Electrospun V2O5 Nanofibers as Photoresponsive Cathode for Lithium-Ion Batteries

Michael Wilhelm, Ruth Adam, Aman Bhardwaj, Iuliia Neumann, Sung Hun Cho, Yuki Yamada, Tohru Sekino, Jianming Tao, Zhensheng Hong, Thomas Fischer, Sanjay Mathur

Summary: This study reports the development of a photo-rechargeable battery using dual-functional materials, electrospun vanadium oxide nanofibers coated with conductive carbon. The battery exhibits high discharge capacity and photoresponsive behavior, and the carbon coating enhances the stability and capacity retention of the battery.

ADVANCED ENGINEERING MATERIALS (2022)

Article Energy & Fuels

Electrode potential influences the reversibility of lithium-metal anodes

Seongjae Ko, Tomohiro Obukata, Tatau Shimada, Norio Takenaka, Masanobu Nakayama, Atsuo Yamada, Yuki Yamada

Summary: In this study, the authors investigate the factors affecting the reversibility of lithium-metal anodes and propose an electrolyte design to improve the cycling performance. They find that the lithium electrode potential and its association with the Li+ coordination structure play a crucial role in Coulombic efficiency and electrolyte decomposition. By enhancing ion-pairing solution structure, the authors achieve a significantly improved cycling performance.

NATURE ENERGY (2022)

Article Chemistry, Physical

Investigating the local structure of Ti based MXene materials by temperature dependent X-ray absorption spectroscopy

Wojciech Olszewski, Carlo Marini, Satoshi Kajiyama, Masashi Okubo, Atsuo Yamada, Takashi Mizokawa, Naurang Lal Saini, Laura Simonelli

Summary: The local structures of Ti based MXene-type electrode materials were investigated using Ti K-edge X-ray absorption fine structure measurements. The effects of temperature on the local bond lengths and their stiffness were studied. Selective etching was found to significantly affect the local structural properties of Ti based MXene materials, resulting in increased interatomic distances and higher achievable performances. These results highlight the importance of local atomic correlations as limiting factors in the diffusion capacity of ion batteries.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2023)

Article Materials Science, Multidisciplinary

Influence of surface termination groups on electrochemical charge storage of MXene electrodes

Kosuke Kawai, Masaki Fujita, Ryosei Iizuka, Atsuo Yamada, Masashi Okubo

Summary: Two-dimensional transition-metal carbides/nitrides (MXenes) have high capacitance, high-rate capability, and good cycle stability, making them ideal electrode materials for electrochemical energy storage devices. The different surface termination groups, such as -O, -OH, and -F, play an important role in the electrochemical properties of MXene electrodes.

2D MATERIALS (2023)

Article Electrochemistry

Machine Learning-based Comprehensive Survey on Lithium-rich Cathode Materials

Akihisa Tsuchimoto, Masashi Okubo, Atsuo Yamada

Summary: To improve the cycle performance and energy efficiency of Li-rich cathode materials with higher energy density and oxygen redox activity, it is necessary to optimize the conditions such as excess lithium, transition metal species, and cutoff voltage. This study analyzed the dominant factors in the energy density of Li-rich cathode materials by using machine learning prediction models based on well-controlled experimental data. The results showed that choosing a moderate amount of excess lithium and increasing the cobalt contents are keys to achieving high energy density in long-term cycles.

ELECTROCHEMISTRY (2023)

Article Chemistry, Physical

Na-Salt Eutectic Dihydrate Melt for High-Voltage Aqueous Batteries

Atsuo Yamada, Atsushi Kitada, Seongjae Ko, Risa Ikeya, Yuki Yamada

Summary: Highly concentrated aqueous electrolytes have been developed by mixing two or more salts, leading to the discovery of a room-temperature Na-salt eutectic dihydrate melt with a wide potential window. The dihydrate melt enables reversible insertion/desertion of Na-ions into/from compounds located far beyond the stable potential windows of conventional aqueous electrolytes.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Green & Sustainable Science & Technology

Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode

Seongjae Ko, Xiao Han, Tatau Shimada, Norio Takenaka, Yuki Yamada, Atsuo Yamada

Summary: A Co-free cathode paired with a silicon suboxide (SiOx) anode in lithium-ion batteries (LIBs) can address the scarcity and supply chain risks of cobalt, leading to sustainable and high-performing LIBs.

NATURE SUSTAINABILITY (2023)

Article Chemistry, Multidisciplinary

Kinetic square scheme in oxygen-redox battery electrodes

Kosuke Kawai, Xiang-Mei Shi, Norio Takenaka, Jeonguk Jang, Benoit Mortemard de Boisse, Akihisa Tsuchimoto, Daisuke Asakura, Jun Kikkawa, Masanobu Nakayama, Masashi Okubo, Atsuo Yamada

Summary: Integrating anionic-redox with cationic-redox is a promising strategy, but hysteresis is a challenge in oxygen-redox cathodes. In this study, nonpolarizing and polarizing oxygen-redox reactions are found to coexist and compete in a specific material. Preventing the polarizing reaction is crucial for achieving nonpolarizing and energy-efficient oxygen-redox reactions.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Square-Scheme Electrochemistry in Battery Electrodes

Masashi Okubo, Kosuke Kawai, Zihan Ma, Atsuo Yamada

Summary: Sustainable development relies on technological advancements, particularly in electricity management and energy storage. Lithium-ion batteries, although widely used, still have limitations in energy density, power density, cost, lifespan, and safety. Further research and improvement are necessary to achieve efficient and stable battery systems.

ACCOUNTS OF MATERIALS RESEARCH (2022)

Article Chemistry, Physical

Dendritic growth lowers carbon electrode work function for efficient perovskite solar cells

Jie Sheng, Jingshan He, Dun Ma, Yuanbo Wang, Wu Shao, Tian Ding, Ronghao Cen, Jingwen He, Zhihao Deng, Wenjun Wu

Summary: This study presents an innovative approach to improve the photovoltaic conversion characteristics and stability of perovskite solar cells through carbon electrode interface modification. By in-situ polymerization and carbonization on the surface of nano-graphite, a dendritic structure carbon electrode is formed, reducing the work function and aligning the energy levels with perovskite. This leads to improved charge and hole collection efficiency, resulting in increased photovoltaic conversion efficiency. Furthermore, the modified carbon electrode-based perovskite solar cells exhibit exceptional stability, maintaining high efficiency even without encapsulation.

CARBON (2024)

Article Chemistry, Physical

High-performance epoxy nanocomposites via constructing a rigid-flexible interface with graphene oxide functionalized by polyetheramine and f-SiO2

Guodong Shi, Jian Song, Xiaoxiao Tian, Tongtong Liu, Zhanjun Wu

Summary: This study demonstrates the improvement of mechanical properties and reduction of coefficient of thermal expansion (CTE) in graphene oxide (GO)/epoxy (EP) nanocomposites by enhancing the interface between GO and EP through functionalization and incorporating rigid-flexible interphases. The results reveal that the SiO2-PEA-GO hybrid exhibits better strengthening and toughening effects, as well as lower CTE, compared to the PEA-GO hybrid due to the presence of rigid-flexible interfaces with higher bonding strength and better energy dissipation mechanisms. Additionally, the nanocomposites with longer polyetheramine (PEA) molecules in the rigid-flexible interphases demonstrate higher strength and toughness, while maintaining a lower CTE. This work provides a promising strategy for constructing adjustable flexible-rigid interfacial structures and offers potential in developing GO/EP nanocomposites with high mechanical properties and low CTE.

CARBON (2024)

Article Chemistry, Physical

A facile route to the synthesis of carbon replicas cast from narrow-mesoporous matrices

Rafal Janus, Sebastian Jarczewski, Jacek Jagiello, Piotr Natkanski, Mariusz Wadrzyk, Marek Lewandowski, Marek Michalik, Piotr Kustrowski

Summary: In this study, a facile procedure for the synthesis of CMK-1 and CMK-2 carbon replicas was developed. The method utilizes basic laboratory equipment and a renewable carbon source, and operates under mild conditions. The resulting carbon mesostructures exhibit exquisite replication fidelity and structural homogeneity, making them suitable for applications in various fields.

CARBON (2024)

Article Chemistry, Physical

Microstructure and energetic characteristics of direct ink printed polymer-free rGO/nanothermite aerogel

Anqi Wang, Connor J. MacRobbie, Alex Baranovsky, Jean-Pierre Hickey, John Z. Wen

Summary: In this study, a novel polymer-free nanothermite aerogel with a wide range of nanoparticle loading was fabricated via a new additive manufacturing process. The SEM images showed a unique porous structure formed by extra thin rGO sheets, wrapping individual nanothermite clusters. The DSC-TGA results and high-speed combustion videos confirmed the enhanced energetic performance of the printed specimen.

CARBON (2024)

Article Chemistry, Physical

A solar-driven interfacial evaporator for seawater desalination based on mussel-inspired superhydrophobic composite coating

Wanze Wu, Misheng Zhao, Shiwei Miao, Xiaoyan Li, Yongzhong Wu, Xiao Gong, Hangxiang Wang

Summary: Superhydrophobic solar-driven interfacial evaporator is an energy-efficient technology for seawater desalination, which is easily fabricated using robust photothermal superhydrophobic coating and substrate. The created bifunctional coating on the melamine sponge substrate shows stable and highly efficient photothermal and superhydrophobic performance for seawater desalination. This superhydrophobic solar-driven interfacial evaporator is expected to have wide applications in seawater desalination.

CARBON (2024)

Article Chemistry, Physical

Bead-like flexible ZIF-67-derived Co@Carbon composite nanofibre mat for wideband microwave absorption in C-band

Zichen Xiang, Zhi Song, Tiansheng Wang, Menghang Feng, Yijing Zhao, Qitu Zhang, Yi Hou, Lixi Wang

Summary: This study presents a co-electrospinning synthesis strategy to fabricate lightweight and porous Co@C composite nanofibres with wideband microwave attenuation capacity. The addition of MOF-derived Co additives enhances the low-frequency absorption performance.

CARBON (2024)

Article Chemistry, Physical

A perovskite-graphene device for X-ray detection

J. Snow, C. Olson, E. Torres, K. Shirley, E. Cazalas

Summary: This study investigates the use of a perovskite-based graphene field effect transistor (P-GFET) device for X-ray detection. The sensitivity and responsivity of the device were found to be influenced by factors such as X-ray tube voltage, current, and source-drain voltage. Simulation experiments were conducted to determine the dose rate and energy incident on the device during irradiation.

CARBON (2024)

Article Chemistry, Physical

Microporous carbon prepared by microwave pyrolysis of scrap tyres and the effect of K+ in its structure on xylene adsorption

Zuzana Jankovska, Lenka Matejova, Jonas Tokarsky, Pavlina Peikertova, Milan Dopita, Karolina Gorzolkova, Dominika Habermannova, Michal Vastyl, Jakub Belik

Summary: This study provides new insights into microwave-assisted pyrolysis of scrap tyres, demonstrating that it can produce microporous carbon black with potential application in xylene adsorption. Compared to conventional pyrolysis, microwave pyrolysis requires less time and energy while maintaining similar adsorption capacity.

CARBON (2024)

Article Chemistry, Physical

Ambipolar charge transfer of larger fullerenes enabled by the modulated surface potential of h-BN/Rh(111)

Max Bommert, Bruno Schuler, Carlo A. Pignedoli, Roland Widmer, Oliver Groning

Summary: A detailed understanding of the interaction between molecules and two-dimensional materials is crucial for incorporating functional molecular films into next-generation 2D material-organic hybrid devices. This study compares the energy level alignment of different-sized fullerenes on a Moire superstructure and finds that C-84 fullerenes can be either neutral or negatively charged depending on slight variations of the electrostatic potential. This discovery suggests a new path to achieve ambipolar charge transfer without overcoming the electronic gap of fullerenes.

CARBON (2024)

Article Chemistry, Physical

Flexible SiO2/rGO aerogel for wide-angle broadband microwave absorption

Yuanjing Cheng, Xianxian Sun, Ye Yuan, Shuang Yang, Yuanhao Ning, Dan Wang, Weilong Yin, Yibin Li

Summary: The dual-structure aerogel (GS) consisting of flexible silica fibers and graphene honeycomb structures exhibits excellent resilience, flexibility, and reliability. It also shows remarkable wave absorbing performance, making it an ideal candidate for microwave absorption applications such as flexible electronics and aerospace.

CARBON (2024)

Article Chemistry, Physical

In situ self-adaptive growth of graphene coatings on hard substrates via competitive NiCo catalysis reaction

Shuyu Fan, Yinong Chen, Shu Xiao, Kejun Shi, Xinyu Meng, Songsheng Lin, Fenghua Su, Yifan Su, Paul K. Chu

Summary: Graphene coatings are promising solid lubrication materials due to their mechanical properties. This study presents a new method for in situ deposition of high-quality graphene coatings on hard substrates using NiCo solid solution and competitive reaction strategies. The graphene coating deposited on substrates with deep NiCo solid solution demonstrates superior low-friction and durability.

CARBON (2024)

Article Chemistry, Physical

Monodispersed semiconducting SWNTs significantly enhanced the thermoelectric performance of regioregular poly(3-dodecylthiophene) films

Mengdi Wang, Sanyin Qu, Yanling Chen, Qin Yao, Lidong Chen

Summary: The improved thermoelectric properties of conducting polymers are achieved by selectively capturing single-walled carbon nanotubes (SWNTs) in a conducting polymer film, leading to increased carrier mobility and reduced thermal conductivity. The resulting composite film exhibits significantly higher electrical conductivity and lower thermal conductivity compared to films with a mixture of SWNTs. This work provides a convenient and efficient method to enhance the thermoelectric properties of conducting polymers.

CARBON (2024)

Review Chemistry, Physical

Component optimization and microstructure design of carbon nanotube-based microwave absorbing materials: A review

Heng Wei, Weihua Li, Kareem Bachagha

Summary: This article reviews the research progress of carbon nanotube-based microwave absorbing materials (MAMs) in recent years, covering the fundamental theory, design strategies, synthesis methods, and future development directions.

CARBON (2024)

Article Chemistry, Physical

MXene-based polymer brushes decorated with small-sized Ag nanoparticles enabled high-performance lithium host for stable lithium metal battery

Chenguang Shi, Junlong Huang, Zongheng Cen, Tan Yi, Shaohong Liu, Ruowen Fu

Summary: This study developed a high-performance Li metal host material, which achieved dendrite-free Li deposition with a low nucleation overpotential and high Coulombic efficiencies through the combination of Ti3C2-g-PV4P sheets and Ag nanoparticles. The full cells assembled with the Li@host anode and LiFePO4 cathode exhibited high discharge capacity and excellent cycling stability, demonstrating a perspective design for future energy storage devices.

CARBON (2024)

Article Chemistry, Physical

A stable full cell having high energy density realized by using a three-dimensional current collector of carbon nanotubes and partial prelithiation of silicon monoxide

Tomotaro Mae, Kentaro Kaneko, Hiroki Sakurai, Suguru Noda

Summary: A new partial prelithiation method for SiO/C-CNT electrodes was developed, which showed reduced irreversible capacity and achieved high energy densities with good reversibility. The method allows for precise control of the degree of prelithiation and is applicable to various chemistries.

CARBON (2024)