4.7 Article

Highly mesoporous carbon nitride photocatalysts for efficient and stable overall water splitting

期刊

APPLIED SURFACE SCIENCE
卷 509, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.144706

关键词

Cobalt-doped highly mesoporous g-C3N4; Overall water splitting; Adjustable Co doping; Cyclohexane oxidation

资金

  1. National MCF Energy RD Program [2018YFE0306105]
  2. National Natural Science Foundation of China [51725204, 21771132, 21471106, 51972216]
  3. Natural Science Foundation of Jiangsu Province [BK20190041, BK20190828]
  4. Key-Area Research and Development Program of GuangDong Province [2019B010933001]
  5. Collaborative Innovation Center of Suzhou Nano Science Technology
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  7. 111 Project

向作者/读者索取更多资源

Solar water splitting via graphitic carbon nitride (g-C3N4) has achieved extensive attention in recent years. However, g-C3N4 usually suffers from low efficiency and poor stability. Besides, the difficulty lying in the gas mixture separation remains as a big challenge. Herein, a one-pot salt-assisted method was proposed to fabricate the cobalt-doped highly mesoporous g-C3N4 (Co-mCN) photocatalysts for efficient overall water splitting into H-2 and H2O2. The adjustable Co doping not only improves the charge separation efficiency, but also enhances the tolerance of g-C3N4 against H2O2 poison. The optimal production for Co-mCN catalysts is gained to be 1.82 mu mol h(-1) and 1.65 mu mol h(-1) for H-2 and H2O2 respectively, while an apparent quantum efficiency (AQE) of 2.2% at 420 nm and a working life for more than 216 h are also achieved. Moreover, it is demonstrated that the produced H2O2 can be easily collected with titanium silicalite molecular sieve (TS-1) as a reusable H2O2 carrier and directly applied in catalyzing cyclohexane oxidation into cyclohexanone and cyclohexanol mixture with 100% selectivity and 0.11% conversion efficiency. This work provides a new thinking and strategy for realizing overall water splitting, manipulating the products and extending the practical applications of g-C3N4 materials in chemical industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据