4.7 Article

Highly textured boron/nitrogen co-doped TiO2 with honeycomb structure showing enhanced visible-light photoelectrocatalytic activity

期刊

APPLIED SURFACE SCIENCE
卷 505, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2019.144419

关键词

Rutile [110]; B/N co-doped; TiO2 honeycomb structure; Hydrogen production; Photocatalysis

资金

  1. French Embassy in Egypt (Institut Francais d'Egypte)
  2. Academy of Scientific Research AMP
  3. Technology (ASRT)
  4. French government
  5. Egyptian government
  6. French Embassy in Egypt (Institut Francais d'Egypte) [30573]
  7. Science and Technology Development Fund (STDF) [30573]

向作者/读者索取更多资源

In this work, we report a novel photocatalyst based on boron and nitrogen co-doped TiO2 rutile (1 1 0) honeycomb structures. The photocatalyst has been prepared by simultaneously oxidizing and doping a Ti-foil substrate at 750 degrees C. The unit cell volume and the crystallite size of grown TiO2 films were measured by Rietveld refinement analysis. The co-doping by boron and nitrogen was achieved simultaneously with the oxidation of the titanium, resulting in a rutile (1 1 0) textured TiO2 film. X-ray photoelectron spectroscopy analysis revealed the presence of Ti-O-N and Ti-O-B-N bonds, and the presence of crystal defects in the lattice was detected and displayed by Raman spectroscopy. The water photo-oxidation properties have been measured as well, and the photocurrent of the B/N co-doped rutile sample prepared reached 270 mu A/cm(2) at 1 V under visible light and was stable in time. The efficient visible light absorption properties of the fabricated nanomaterial were attributed to the presence of oxygen vacancies and the introduction of impurity levels, as well as to synergistic effects between the introduced boron and nitrogen elements. The results presented demonstrate a new route for the preparation of TiO2 based catalysts, and open prospects for the photocatalysis community.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据