4.8 Article

Spatially resolved oxygen reaction, water, and temperature distribution: Experimental results as a function of flow field and implications for polymer electrolyte fuel cell operation

期刊

APPLIED ENERGY
卷 252, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.113421

关键词

Fuel cell; Catalyst layer utilization; Oxygen imaging; Temperature mapping; Neutron tomography

资金

  1. U.K. Engineering and Physical Sciences research council under the Supergen Consortium [EP/G030995/1, EP/I014640/1, EP/K503381/1]
  2. Sao Paulo Research Foundation [2017/15304-6, 2016/12397-0]
  3. FAPESP [2013/11316-9, 2014/22130-6, 2014/09087-4, 2017/11937-4]
  4. RCGI Research Centre for Gas Innovation - FAPESP [2014/50279-4]
  5. EPSRC [EP/I014640/1, EP/M023508/1, EP/G030995/1, EP/P024807/1, EP/J021199/1] Funding Source: UKRI

向作者/读者索取更多资源

In situ and ex situ spatially-resolved techniques are employed to investigate reactant distribution and its impacts in a polymer electrolyte fuel cell. Temperature distribution data provides further evidence for secondary flows inferred from reactant imaging data, highlighting the contribution of convection in heat as well as reactant distribution. Water build-up from neutron tomography is linked to component degradation, matching the pattern seen in the reactant distribution and thus suggesting that high, non-uniform local current densities shape degradation patterns in fuel cells. The correlations shown between different techniques confirm the use of the versatile reactant imaging technique, which is used to compare commonly used flow field designs. Among serpentine-type designs, the single serpentine is superior in both equivalent current density and reactant distribution, showing large contributions from convective flow. On the other hand, the interdigitated design is shown to produce larger equivalent current densities, while showing a somewhat poorer reactant distribution. Considering the correlations drawn between the techniques, this suggests that the interdigitated design compromises durability in favour of power output. The results highlight how established techniques provide a robust background for the use of a new and flexible imaging technique toward designing advanced flow fields for practical fuel cell applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据