4.5 Review

Endothelial cells and cathepsins: Biochemical and biomechanical regulation

期刊

BIOCHIMIE
卷 122, 期 -, 页码 314-323

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biochi.2015.10.010

关键词

Cardiovascular; Cathepsins; Endothelial cells; Sickle cell; HIV; Shear stress

资金

  1. NIH from the Office of the Director, National Institutes of Health [DP2OD007433]

向作者/读者索取更多资源

Cathepsins are mechanosensitive proteases that are regulated not only by biochemical factors, but are also responsive to biomechanical forces in the cardiovascular system that regulate their expression and activity to participate in cardiovascular tissue remodeling. Their elastinolytic and collagenolytic activity have been implicated in atherosclerosis, abdominal aortic aneurysms, and in heart valve disease, all of which are lined by endothelial cells that are the mechanosensitive monolayer of cells that sense and respond to fluid shear stress as the blood flows across the surfaces of the arteries and valve leaflets. Inflammatory cytokine signaling is integrated with biomechanical signaling pathways by the endothelial cells to transcribe, translate, and activate either the cysteine cathepsins to remodel the tissue or to express their inhibitors to maintain healthy cardiovascular tissue structure. Other cardiovascular diseases should now be included in the study of the cysteine cathepsin activation because of the additional biochemical cues they provide that merges with the already existing hemodynamics driving cardiovascular disease. Sickle cell disease causes a chronic inflammation including elevated TNF alpha and increased numbers of circulating monocytes that alter the biochemical stimulation while the more viscous red blood cells due to the sickling of hemoglobin alters the hemodynamics and is associated with accelerated elastin remodeling causing pediatric strokes. HIV-mediated cardiovascular disease also occurs earlier in than the broader population and the influence of HIV-proteins and antiretrovirals on endothelial cells must be considered to understand these accelerated mechanisms in order to identify new therapeutic targets for prevention. (C) 2015 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据