4.7 Article

Experimental hydrothermal characteristics of minichannel heat sink using various types of hybrid nanofluids

期刊

ADVANCED POWDER TECHNOLOGY
卷 31, 期 2, 页码 621-631

出版社

ELSEVIER
DOI: 10.1016/j.apt.2019.11.017

关键词

Minichannel heat sink; Hybrid nanofluid; Figure of merit; Entropy generation; Coefficient of performance

向作者/读者索取更多资源

The hydrothermal characteristics of minichannel heat sink are analyzed experimentally by using deionized (DI) water based different nanoparticles mixture dispersed hybrid nanofluids. Al2O3, MgO, SiC, AlN, MWCNT and Cu nanoparticles are considered for this study. Different nanoparticles combinations (oxide-oxide, oxide-carbide, oxide-nitride, oxide-carbon nanotube and oxide-metal) in 50/50 vol ratio with base fluid (DI water) have been taken as coolants for volume concentration of 0.01%. Effects of volume flow rate (0.1-0.5LPM), fluid inlet temperature (20-40 degrees C) and Reynolds number (50-500) are studied for heat flux of 50 W/cm(2). Convective heat transfer coefficient and pressure drop are increased by about 42.24% and 22% for Al2O3 + MWCNT hybrid nanofluid. The maximum reduction of 21.36% in thermal resistance is obtained for Al2O3 + MWCNT hybrid nanofluid in comparison to DI water. Heat transfer effectiveness and figure of merit are above one for all the hybrid nanofluids which conclude that hybrid nanofluid is better option for electronics cooling over DI water. Al2O3 + MWCNT hybrid nanofluid is better in terms of heat transfer effectiveness; whereas, Al2O3 + AlN hybrid nanofluid (oxide-nitrite mixture) has maximum heat transfer coefficient to pressure drop ratio and coefficient of performance. (C) 2019 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据