4.7 Article

Mitsuba 2: A Retargetable Forward and Inverse Renderer

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 38, 期 6, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3355089.3356498

关键词

Ray Tracing; Global Illumination; Differentiable Rendering; SIMD

资金

  1. Swiss National Science Foundation (SNSF) [200021_184629]
  2. Swiss National Science Foundation (SNF) [200021_184629] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Modern rendering systems are confronted with a dauntingly large and growing set of requirements: in their pursuit of realism, physically based techniques must increasingly account for intricate properties of light, such as its spectral composition or polarization. To reduce prohibitive rendering times, vectorized renderers exploit coherence via instruction-level parallelism on CPUs and CPUs. Differentiable rendering algorithms propagate derivatives through a simulation to optimize an objective function, e.g., to reconstruct a scene from reference images. Catering to such diverse use cases is challenging and has led to numerous purpose-built systems-partly, because retrofitting features of this complexity onto an existing renderer involves an error-prone and infeasibly intrusive transformation of elementary data structures, interfaces between components, and their implementations (in other words, everything). We propose Mitsuba 2, a versatile renderer that is intrinsically retargetable to various applications including the ones listed above. Mitsuba 2 is implemented in modern C++ and leverages template metaprogramming to replace types and instrument the control flow of components such as BSDFs, volumes, emitters, and rendering algorithms. At compile time, it automatically transforms arithmetic, data structures, and function dispatch, turning generic algorithms into a variety of efficient implementations without the tedium of manual redesign. Possible transformations include changing the representation of color, generating a wide renderer that operates on bundles of light paths, just-in-time compilation to create computational kernels that run on the GPU, and forward/reverse-mode automatic differentiation. Transformations can be chained, which further enriches the space of algorithms derived from a single generic implementation. We demonstrate the effectiveness and simplicity of our approach on several applications that would be very challenging to create without assistance: a rendering algorithm based on coherent MCMC exploration, a caustic design method for gradient-index optics, and a technique for reconstructing heterogeneous media in the presence of multiple scattering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据