4.6 Article

Theoretical Exploration of Carrier Dynamics in Amorphous Pyrene-Fluorene Derivative Organic Semiconductors

期刊

ACS OMEGA
卷 4, 期 9, 页码 14124-14132

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b02083

关键词

-

资金

  1. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) [YX03001]
  2. Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
  3. Synergetic Innovation Center for Organic Electronics and Information Displays

向作者/读者索取更多资源

In this report, a series of amorphous organic optoelectronic pyrene-fluorene derivative materials (BP1, BP2, PFP1, PFP2, OP1, OP2) were systematically investigated through a theoretical method. Their molecular structures are different due to the difference of substitution groups at C9 of the fluorene core, which include electron-rich pyrene group (PFP1 and PFP2), relatively neutral phenyl group (BP1 and BP2), and electron-withdrawing oxadiazole group (OP1 and OP2). In the beginning, through the physical model analysis, this report proposes that the concept of p-type or n-type is not flawless because there is no real doping process in these molecular organic semiconductors. To prove such a concept, the Marcus theory and first-principles were employed to calculate the intrinsic transfer mobility of these materials. Not as the common method used for the single crystal, in this report, a series of disorderly designed lattice cells were constructed to represent the disordered distribution of the amorphous pyrenyl-fluorene derivatives. Then, the reorganization energy of materials was calculated by the adiabatic potential energy surface method. The transfer integral of dimers was calculated in possible hopping pathways near the central molecule. Research results show that the six pyrene-fluorene materials all possess intrinsic bipolar transfer characteristics. In addition, it is also showed that the electron-rich group is not necessary to improve hole transfer, and that the electron-withdrawing group is also not necessary to improve electron transfer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据