4.8 Article

Tensorial stress-strain fields and large elastoplasticity as well as friction in diamond anvil cell up to 400 GPa

期刊

NPJ COMPUTATIONAL MATERIALS
卷 5, 期 -, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41524-019-0234-8

关键词

-

资金

  1. Army Research Office [W911NF-17-1-0225]
  2. National Science Foundation [DMR-1904830]
  3. Office of Naval Research [N00014-19-1-2082]

向作者/读者索取更多资源

Various phenomena (fracture, phase transformations, and chemical reactions) studied under extreme pressures in diamond anvil cell are strongly affected by fields of all components of stress and plastic strain tensors. However, they could not be measured. Here, we suggest a coupled experimental-theoretical-computational approach that allowed us (using published experimental data) to refine, calibrate, and verify models for elastoplastic behavior and contact friction for tungsten (W) and diamond up to 400 GPa and reconstruct fields of all components of stress and large plastic strain tensors in W and diamond. Despite the generally accepted strain-induced anisotropy, strain hardening, and path-dependent plasticity, here we showed that W after large plastic strains behaves as isotropic and perfectly plastic with path-independent surface of perfect plasticity. Moreover, scale-independence of elastoplastic properties is found even for such large field gradients. Obtained results open opportunities for quantitative extreme stress science and reaching record high pressures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据