4.6 Article

Development of an Immunosensor Based on the Exothermic Reaction between H2O and CaO Using a Common Thermometer as Readout

期刊

ACS SENSORS
卷 4, 期 9, 页码 2375-2380

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.9b00968

关键词

immunosensor; biosensor; cancer diagnosis; carcinoembryonic antigen; temperature; thermometer

资金

  1. NSFC [21804022, 21575025, 2155027]
  2. Program for Changjiang Scholars and Innovative Research Team in University [IRT15R11]
  3. cooperative project of production and study in University of Fujian Province [2018Y4007]
  4. Sciences Foundation of Fujian Province [2018J01685, 2018J01682]
  5. STS Key Project of Fujian Province [2017T3007]
  6. Science and Technology Project of the Education Department of Jiangxi Province of China [GJJ170846]

向作者/读者索取更多资源

Thermometers, one of the most commonly used instruments at home, are normally adapted to measure temperature directly with high accuracy but rarely adopted to act as readout in the biosensors. It is necessary to find some ways to establish a relationship between the concentration of the target and the temperature change. In this study, a common thermometer was used as readout to develop a convenient immunosensor. The designed immunosensor comprises three components, including target recognition area, water flow system, and exothermic reaction bottle. The capture antibody for the target [carcinoembryonic antigen (CEA) was selected as a model target] was preloaded on the bottom of the recognition area. In the presence of CEA, a sandwich-type structure was formed between the capture antibody, CEA, and biotinylated detection antibody. Then, the streptavidin-functionalized platinum nanoparticles were labeled on the detection antibody due to biotin-avidin interaction. The captured platinum nanoparticles can effectively catalyze the decomposition of H2O2 into O-2. The continuous production of gas resulted in pressure increment inside the reaction bottle and further pushed the water flow into the exothermic reaction bottle. Finally, the water reacted with calcium oxide to generate a large amount of heat in the exothermic reaction bottle; thereby the temperature inside the bottle was enhanced and recorded by a common thermometer easily. The temperature enhancement has a linear relationship with the CEA concentration in the range of 7.81-500 pg/mL with a detection limit of 0.6 pg/mL. Furthermore, by taking advantage of simplicity, compatibility, stability, and high sensitivity, our temperature-based immunoassay has been applied to detect CEA in human serum samples with satisfactory results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据