4.7 Article

Multimode 3-D Kirchhoff Migration of Receiver Functions at Continental Scale

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
卷 124, 期 8, 页码 8953-8980

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018JB017288

关键词

imaging seismology; Kirchhoff migration; Hellenic subduction zone; receiver functions

资金

  1. European Unions Horizon 2020 research and innovation program [716542]
  2. Research Council of Norway via the project Subduction zoneWater and Metamorphism: A Modelling and Imaging Study [231354]

向作者/读者索取更多资源

Receiver function analysis is widely used to image sharp structures in the Earth, such as the Moho or transition zone discontinuities. Standard procedures either rely on the assumption that underlying discontinuities are horizontal (common conversion point stacking) or are computationally expensive and usually limited to 2-D geometries (reverse time migration and generalized Radon transform). Here, we develop a teleseismic imaging method that uses fast 3-D traveltime calculations with minimal assumption about the underlying structure. This allows us to achieve high computational efficiency without limiting ourselves to 1-D or 2-D geometries. In our method, we apply acoustic Kirchhoff migration to transmitted and reflected teleseismic waves (i.e., receiver functions). The approach expands on the work of Cheng et al. (2016, ) to account for free surface multiples. We use an Eikonal solver based on the fast marching method to compute traveltimes for all scattered phases. Three-dimensional scattering patterns are computed to correct the amplitudes and polarities of the three component input signals. We consider three different stacking methods (linear, phase weighted, and second root) to enhance the structures that are most coherent across scattering modes and find that second-root stack is the most effective. Results from synthetic tests show that our imaging principle can recover scattering structures accurately with minimal artifacts. Application to real data from the Multidisciplinary Experiments for Dynamic Understanding of Subduction under the Aegean Sea experiment in the Hellenic subduction zone yields images that are similar to those obtained by 2-D generalized Radon transform migration at no additional computational cost, further supporting the robustness of our approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据