4.7 Article

Variational ansatz-based quantum simulation of imaginary time evolution

期刊

NPJ QUANTUM INFORMATION
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41534-019-0187-2

关键词

-

资金

  1. BP plc
  2. EPSRC National Quantum Technology Hub in Networked Quantum Information Technology [EP/M013243/1]
  3. National Natural Science Foundation of China [11875050]
  4. NSAF [U1730449]
  5. Japan Student Services Organization (JASSO) Student Exchange Support Program

向作者/读者索取更多资源

Imaginary time evolution is a powerful tool for studying quantum systems. While it is possible to simulate with a classical computer, the time and memory requirements generally scale exponentially with the system size. Conversely, quantum computers can efficiently simulate quantum systems, but not non-unitary imaginary time evolution. We propose a variational algorithm for simulating imaginary time evolution on a hybrid quantum computer. We use this algorithm to find the ground-state energy of many-particle systems; specifically molecular hydrogen and lithium hydride, finding the ground state with high probability. Our method can also be applied to general optimisation problems and quantum machine learning. As our algorithm is hybrid, suitable for error mitigation and can exploit shallow quantum circuits, it can be implemented with current quantum computers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据