4.7 Article

Switchable slow light rainbow trapping and releasing in strongly coupling topological photonic systems

期刊

PHOTONICS RESEARCH
卷 7, 期 9, 页码 1075-1080

出版社

OPTICAL SOC AMER
DOI: 10.1364/PRJ.7.001075

关键词

-

类别

资金

  1. National Natural Science Foundation of China [11434017, 11504114]
  2. Guangdong Innovative and Entrepreneurial Research Team Program [2016ZT06C594]
  3. National Key R&D Program of China [2018YFA0306200]
  4. Science and Technology Program of Guangzhou [201904010105]
  5. Natural Science Foundation of Guangdong Province, China
  6. Fundamental Research Funds for the Central Universities [x2wl-D2191420]

向作者/读者索取更多资源

We design and present a switchable slow light rainbow trapping (SLRT) state in a strongly coupling topological photonic system made from a magneto-optical photonic crystal waveguide channel. The waveguide channel supports slow light states with extremely small group velocity (v(g) = 2.1 x 10(-6) c), low group-velocity dispersion, and a broadband operation bandwidth (3.60-4.48 GHz, near 22% of bandwidth). These slow light states originate from the strong coupling between two counter propagating topological photonic states. Under a gradient magnetic field, different frequency components of a wave packet are separated and stored at different positions for a long temporal duration with high spatial precision (without crosstalk and overlap between the electric fields of different frequencies) to form SLRT. Besides, these SLRT states can be easily switched among the forbidden state, trapped state, and releasing state by tuning the external magnetic field. The results suggest that the topological photonic state can offer a precise route of spatial-temporal-spectral control upon a light signal and find applications for optical buffers, broadband slow light systems, optical filters, wavelength-division multiplexing, and other optical communication devices. (C) 2019 Chinese Laser Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据