4.6 Article

Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Process optimization and characterization

期刊

JOURNAL OF MANUFACTURING PROCESSES
卷 44, 期 -, 页码 158-165

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jmapro.2019.06.002

关键词

Continuous laser welding; Spatial beam oscillation; Thin sheet materials; Aluminium and copper; Dissimilar welding

向作者/读者索取更多资源

Continuous laser welding with spatial beam oscillation was investigated as a method of joining combinations of thin copper and aluminum sheets. Welding of these materials is required for manufacturing of electronic components due to their physical properties. Welding of dissimilar metals such as Al-Cu with conventional manufacturing techniques is difficult due to unavoidable formation of brittle intermetallic compounds, which reduce both the mechanical and electrical properties of the joint. The aim of this work was to understand how process parameters such as laser power, welding speed and wobbling amplitude affected the weld seam, making it possible to determine which parameters were of greatest influence on the mechanical and electrical properties of the resulting joint. Both the width and penetration of the weld seam were strongly correlated to the wobbling amplitude. The ultimate tensile strength of both configurations (Al-Cu and Cu-Al) was as high as 100 kgf with optimized process parameters. Micro-hardness tests showed an increase in hardness near the molten area. The temperatures attained during welding were approximately 40 degrees C at 10 mm from the weld seam. Low electrical contact resistance and high tensile strengths were obtained with the same parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据